-
iPhone 16 钢壳电池真相:散热优化,并非爆炸隐患
iPhone 16 钢壳电池真相:散热优化,并非爆炸隐患最近,关于iPhone 16使用钢壳电池容易爆炸的消息在网上流传,引发了广泛关注和担忧。对此,有专家怒批谣言传播者,呼吁公众不要被带节奏...
手机互联 2024-09-23 10:23:22 -
苹果未来将搭载台积电2纳米芯片,但并非所有机型都配备
苹果未来将搭载台积电2纳米芯片,但并非所有机型都配备根据知名分析师郭明錤的预测,2024年发布的iPhone 17系列将采用台积电的3纳米芯片工艺制造的处理器。而预计2026年发布的iPhone 18机型,其处理器则将使用台积电的2纳米技术...
手机互联 2024-09-19 16:36:23 -
iPhone 16系列获入网认证,45W快充升级?真相并非如此
iPhone 16系列获入网认证,45W快充升级?真相并非如此iPhone 16系列国行版已获得入网认证,入网信息显示,该系列四款新机最高提供15V/3A的快充,不少用户由此推测iPhone 16系列支持了45W快充,并将其视为“史诗级升级”。然而,博主Kang对此观点持不同意见...
手机互联 2024-09-12 16:25:51 -
国产顶级旗舰销量惨淡?小米14 Ultra逆袭登顶,但并非“真香”
国产顶级旗舰销量惨淡?小米14 Ultra逆袭登顶,但并非“真香”所有的安卓品牌都明白自己家的顶级旗舰,某种程度上就是来秀肌肉的,真实销量可能是旗下所有产品中最低的,他们不像苹果越是高端的机型销量越好。在这种前提之下国产顶级旗舰更是如此,不信大家看下面的数据...
手机互联 2024-08-22 09:10:58 -
三星Galaxy Ring成首款Qi2认证产品,但并非“Android版MagSafe”
三星Galaxy Ring成首款Qi2认证产品,但并非“Android版MagSafe”IT之家8月21日消息,虽然自2023年1月宣布并于4月正式推出,但Qi2无线充电标准至今尚未得到主流Android品牌手机的广泛采用。然而,三星向无线电力联盟(WPC)提交的认证文件却证实,Galaxy Ring不仅是三星的第一款智能戒指产品,也是三星首款获得Qi2认证的移动设备...
手机互联 2024-08-21 11:14:41 -
华为Mate60系列航天员主题宣传片上线:黄渤青岛方言演绎“月球,从未如此Mate”
华为Mate60系列航天员主题宣传片上线:黄渤青岛方言演绎“月球,从未如此Mate”IT之家8月20日消息,据“华为终端”官方微博,华为Mate60系列航天员主题宣传片《月球,从未如此Mate》已正式上线。该片以演员黄渤扮演的航天员“小马”为主角,生动地展示了Mate60系列手机的各种功能...
手机互联 2024-08-20 16:47:24 -
华为Mate60系列航天员大片《月球,从未如此Mate》明天上映!
华为Mate60系列航天员大片《月球,从未如此Mate》明天上映!快科技8月19日消息,今日,华为官方宣布,华为Mate60系列航天员大片《月球,从未如此Mate》将在明天正式上映。这部大片是“华为影业”继2018年和2022年之后,第三部以航天员为主题的宣传视频,延续了此前两部视频中航天员小马在月球上的奇妙经历,并将在新片中揭晓小马的真实身份...
手机互联 2024-08-19 11:59:06 -
谷歌AI硬件路线分化:独立处理并非最优解?
谷歌AI硬件路线分化:独立处理并非最优解?美国当地时间8月13日,谷歌2024年度“MadebyGoogle”大会正式举行,活动现场,谷歌以AI为核心,向外界展示了其在硬件与软件领域的最新成果与创新。包括Pixel 9系列智能手机、Pixel 9 Pro Fold折叠屏手机、Pixel Watch 3智能手表和Pixel Buds Pro 2无线耳机在内的新品悉数登场,新品数量相较去年要多出不少...
手机互联 2024-08-14 20:38:56 -
Pixel 9 系列首发搭载 Android 14,并非最新 Android 15,部分功能需等待更新
Pixel 9 系列首发搭载 Android 14,并非最新 Android 15,部分功能需等待更新IT之家 8 月 14 日消息,谷歌今天发布了 Pixel 9 系列旗舰手机,然而令人意外的是,它们并未出厂预装最新的 Android 15 系统。用户在下周拿到新机时,会发现设备运行的是 Android 14...
手机互联 2024-08-14 15:49:54 -
加州即将加入苹果钱包数字身份证支持,但并非替代实体证件
加州即将加入苹果钱包数字身份证支持,但并非替代实体证件苹果公司在2021年的iOS 15系统中为iPhone钱包应用新增了“数字身份证”支持,允许受支持的美国居民将他们的驾驶执照或州身份证添加到iPhone和Apple Watch钱包应用中。目前,只有亚利桑那州、马里兰州、俄亥俄州和科罗拉多州正式支持此功能...
手机互联 2024-08-06 10:56:04 -
枪枪爆头,手撕敌人,新厂商的第一款肉鸽游戏就如此刺激?
射过瘾时,别忘了补上一拳。提到FPS这个领域,你的大脑一定会飞速闪过无数个名垂青史的经典系列,也许是波澜壮阔的“战地”,也许是起伏跌宕的“使命召唤”...
游戏资讯 2023-10-19 03:07:57 -
数学论证GPT-4不是随机鹦鹉:真如此的话整个宇宙都会坍缩
克雷西 发自 凹非寺量子位 | 公众号 QbitAI对于ChatGPT的工作原理,一个常见的解释是根据统计学规律预测下一个词。但最近一位叫Jacob Bayless的工程师用数学方法得出惊人结论:若是如此,所需的信息量足以让整个宇宙都坍塌成黑洞。这一数据量是50000^8000,根据贝肯斯坦上限(Bekenstein bound)原理,如果把这些信息分配到空间当中,所需要的信息密度已经远超宇宙能承受的最大值。而这仅仅是把数据存储起来的消耗,更不必说还要进行运算了。而ChatGPT与单纯统计预测的区别,可以做这样的类比:如果天文学家通过历史观测记录推算出月食的周期,这可以算是统计学。但当他们总结出牛顿万有引力定律的时候,就已经超越了统计学。什么是“随机鹦鹉”一个流传很广的说法,所谓大语言模型实际上相当于一个“随机鹦鹉”——与我们观察其输出时的情况相反,语言模型只是将其在庞大的训练数据中观察到的语素胡乱拼接在一起,根据概率生成文本,但不清楚文字背后的任何含义,就像一个随机的鹦鹉。出自论文On The Dangers of Stochastic Parrots: Can Language Models Be Too Big这对过去的语言模型,或许确实成立。比如曾经流行的n-gram算法。比如当我们在搜索引擎中进行搜索时,出现的联想词就能用此方法实现。具体来说,下面的三行文本中,第一行纯粹是随机生成,第二行考虑了单词在英语中整体的出现概率,第三行则考虑了单词在前一个词后面出现的概率。n = 0: RECEIVE FALL SURPRISED FRIDAY INGREDIENT…n = 1: REPRESENTING AND SPEEDILY IS AN GOOD…n = 2: THE CHARACTER OF THIS POINT IS THEREFORE…不难看出,随着n值的升高,文本越来越接近人类语言。而n-gram模型根本不需要掌握其中的语义或理解其中的抽象概念,就能生成像模像样的句子。据此有人猜想,GPT-4会不会也只是一种高级的n-gram呢?Bayless提出,GPT必须学会抽象才能有如今的效果,至少GPT-4肯定如此。GPT-4不只是“随机鹦鹉”要证明这一点,可以先看下棋机器人的例子。如果有一种下棋机器人,存储了巨量棋谱数据,对于每个棋局都能推荐下一步。那它就能通过“背谱法”模仿其他任何棋手或程序的下法比如Stockfish是最先进的国际象棋程序,如果仅通过对战而不看源码,是无法确定Stockfish是否在背谱。但实际上,包含所有情形和步骤的棋谱数据量可能超过2^154。而Stockfish的程序只占用了不到50MB的空间,根本不可能存下需要的所有棋谱。所以Stockfish肯定是通过更高级的方法来实现下棋的。人类语言的复杂度远超过棋类游戏,因此GPT的数据量更是同理。仅在是上一代的GPT-3的token字典中就有超过5万token。如果对每个词都逐一建立统计信息,n-gram模型中n值将高达8000。届时,需要存储的情景数量将达到50000^8000。正如文章开头所提到,这简直是天文数字,足以让整个宇宙坍缩。因此,GPT是“随机鹦鹉”的猜测在理论上得到了一定程度的批驳。“随机鹦鹉”达不到的高度仅在理论上进行说明是不充分的,因此研究人员还进行了两个实验,意图证明大模型在学习过程中已经抽象出了算法。第一个实验关于一道经典的农夫过河问题。一个农夫有一条船,和狼、羊、菜,农夫要把这3样东西运到河到另一边,农夫每次最多只能通过这个船运一样东西,要防止狼吃羊、羊吃白菜(即不能在没有农夫在的情况下同时在同一岸边),该怎么过?研究人员将这个问题中的农夫、船、河分别替换成地球人、虫洞和银河系。狼、羊和菜则分别换成火星人、金星人和月球人。替换的目的是因为互联网上不太可能出现类似语料,可以判断大语言模型是不是真的掌握了通用方法。如果GPT不是“随机鹦鹉”,那么它至少不会犯下只有“随机鹦鹉”才会犯的错误。GPT-4针对替换后的问题给出了正确的回答,GPT-3.5则没有。但它们并没有犯研究人员预想的“鹦鹉”错误——即在回答中出现狼、船、河等已被替换掉的词语。回答中使用的句子,也无法在互联网中被检索到。这些现象都证明了现在的大语言模型的生成方式已经超越了“概率预测”。第二个实验则是数字排序。如果让GPT学习数字排序,它们究竟是只会记住给出过的数字顺序,还是真的研究出排序算法呢?其实只要从GPT的输出当中就可以看出来了。假如从1-100中随机选择10个数字,并将其顺序打乱,将一共有这么多种情形:如果再考虑数字的重复出现,又或者数字的数量发生变化,根本不可能存储如此之多的情形。因此,只要GPT能够针对未知的排序问题给出正确的回答,便可以说明它们是真的研究出了排序算法。研究人员训练了一款特斯拉前AI总监Andrej Kaparthy发明的语言模型nanoGPT,专门让它做数字排序。结果显示,随着训练步数的增加,模型给出的数字顺序越来越完美。虽然在训练步数达到16万左右时突然出现了大量错误,但也很快得到了纠正。这说明这款模型并不是仅仅根据学习的素材对未知的数字进行排序,而是已经掌握了背后的方法。这个测试只是在一台笔记本电脑、算力非常有限的GPU上进行的。更不必说GPT-4了。参考链接:https://jbconsulting...
智能设备 2023-05-27 16:02:19